Uncertainty principles for the Heckman–Opdam transform
نویسندگان
چکیده
منابع مشابه
New Uncertainty Principles for the Continuous Gabor Transform and the Continuous Wavelet Transform
Abstract. Gabor and wavelet methods are preferred to classical Fourier methods, whenever the time dependence of the analyzed signal is of the same importance as its frequency dependence. However, there exist strict limits to the maximal time-frequency resolution of these both transforms, similar to Heisenberg’s uncertainty principle in Fourier analysis. Results of this type are the subject of t...
متن کاملPaley-Wiener Theorems and Uncertainty Principles for the Windowed Linear Canonical Transform
In a recent paper the authors have introduced the windowed linear canonical transform and shown its good properties together with some applications such as Poisson summation formulas, sampling interpolation and series expansion. In this paper we prove the Paley-Wiener theorems and the uncertainty principles for the (inverse) windowed linear canonical transform. They are new in literature and ha...
متن کاملUncertainty principles for hypercomplex signals in the linear canonical transform domains
Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on ...
متن کاملUncertainty principles
Traditional (West) German politics in the postwar era was very easy to understand. There were the Social Democrats (SPD) on the left, the Christian Democrats (CDU/CSU) on the right, and the much less numerous Free Democrats (FDP) in the middle. Typically, neither of the larger parties had an outright majority, so the small FDP effectively decided who could govern by choosing a coalition partner...
متن کاملUncertainty Principles for Integral Operators
The aim of this paper is to prove new uncertainty principles for an integral operator T with a bounded kernel for which there is a Plancherel theorem. The first of these results is an extension of Faris’s local uncertainty principle which states that if a nonzero function f ∈ L(R, μ) is highly localized near a single point then T (f) cannot be concentrated in a set of finite measure. The second...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin des Sciences Mathématiques
سال: 2016
ISSN: 0007-4497
DOI: 10.1016/j.bulsci.2016.03.004